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TO FRITZ ROHRLICH 



PREFACE 

The purpose of this papem is not to present new results, 

but to make a little-known area in the mathematical founda- 

tions of quantum mechanics accessable to a wider audience. ~ 

Therefore the discussion of the physics and mathematics 

will be limited to the bare essentials. The whole subject 

is developed in Terms of the simple, well-known example of the 

harmonic oscillator, and the mathematical notions have been 

introduced in the least general form which is compatible with 

the purpose of This paper (Unfortunately, the mathematics 

had to be abbreviated to an extent which, in The second 

part, precludes the possibility of proving The mathematical 

statements, but which, hopefully, still allows one to under- 

stand the content of These mathematical statements). After 

one has once met these notions for this well known particu- 

lar ease, one will more easily absorb them in their general 

form. Most of The results stated here are known to be True 

in much more general situations, in particular for a large 

class of enveloping algebras of Lie groups. Remarks (ending 

with the symbol o) have been inserted Throughout the paper 

To mention these generalizations and additional related mate- 

rial. The general mathematical background has been Treated 

~It is based on a series of lectures given to mathemati- 
cians and physicists. 
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in several monographs 1'2 written by the pioneers of this 

area, to which we refer the interested reader. 

One can argue that the subject described here is very 

useful for physics, because it makes the Dirac formalism 

rigorous and therewith gives a mathematical justification 

~o~ @l$~h@ mathematically undefined operations which 

physicists have been using for generations. It also gives 

a slightly different framework for quantum mechanics than 

the von Neumann axioms, in which a physical state is de- 

scribed by a collection of square integrable functions whose 

elements differ on a set of measure zero. In a physically 

more practical description one would associate with the physi- 

cal state one test function (an element of the Schwark space) 

which is given by the resolution function of the experimental 

apparatus that is used in the preparation of the state. The 

subject presented here provides just such a description. 

Thus the use of the mathematical structure set forth here 

leads to a physically more practical and mathematically sim- 

pler description, even though it requires one to learn ini- 

tially a little bit more mathematics than that for the Hilbert 

space formulation of quantum mechanics. 

But all this appears to me negligible compared to the 

main feature of this mathematical structure, its beauty. 

The Rigged Hilbert Space has been one of the most beautiful 

pieces of art I have come across and has given me joy when- 

ever I looked at it. I hope that the simplified picture 

which is shown in this paper still conveys enough of this 
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beauty to please even those physicists who avoid new mathe- 

matics because they see no need for complete mathematical 

rigour in physical calculations. 

In the following introductory section a general frame- 

work for the formulation of quantum mechanics in~ne Rigged 

Hilbert Space is given. Though modifications of this frame- 

work which incorporate the same mathematical structure are 

possible, it is within this framework that the subject is 

developed in the succeeding sections. 

In section I the algebraic representation space for 

the algebra generated by the momentum and position operator 

is constructed in a way very familiar to physicists~ the 

essential assumption is that there exists at least one 

eigenvector of the energy operator. 

In section II this algebraic space is equipped with 

two different topologies, the usual Hiibert space topology 

and a stronger, nuclear topology. This nuclear topology has 

a dual purpose: i.) the elements of the algebra are repre- 

sented by continuous operators and 2.) there exist eigen- 

vectors of the momentum and position operators, (-as explained 

in the following sections-) neither of which is the case for 

the usual Hilbert space formulation. 

In section III the spaces of antilinear functionals 

are described and the Rigged Hilbert Space is constructed. 
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Section IV gives the definition of generalized eigenvec- 

tons and a statement of the Nuclea~ Spectral Theorem, which 

guarantees the existence of a complete set of generalized 

eigenvectors of momentum and position operators. Realiza- 

Tions of the Rigged Hilbert Space by spaces of functions 

and distributions are described and in Appendix V, a simple 

derivation of the Schrodinger realization is given. 
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O. INTRODUCTION 

To obtain a physical theory means to obtain a mathe- 

matical image of a physical system. The mathematical image 

for the domain of quantum phenomena is, according to yon 

Neumann3)~ the set of operators in a Hilbert space. For the 

ease that no superselection rules are present (irreducible 

systems) the physical observables are identified with the 

set of all self-adjoint operators in the Hilbert space H and 

the ("pure") physical states are identified with the set of 

all unit rays, or equivalently, the one dimensional projection 

operators in H. 

This one-to-one correspondence between the physical 

objects of a system and the operators in a Hilbert space 

has two deficiencies: 

i) It does not contain all the information one has in 

quantum mechanics. 

2) It contains more information than one can ever obtain 

in physics. 

To elaborate on I.): It is well known that all (separable 

infinite dimensional) Hilbert spaces are isomorphic and so 

are -- roughly speaking -- their algebras of operators. This 

means that all physical systems would be equivalent, which 



is obviously not the ease ~nless one has only one physical 

system, which then would have to be the microphysical world). 

In every practical case one has to consider an isolated 

physical system which -- though it has to be large enough 

so that it does not become trivial w must be small enough 

that one may command a view of its mathematical image. 

The various microphysical systems in nature have quite 

distinct properties and must therefore have quite distinct 

mathematical images. Thus every particular physical system 

has its algebra of operators and its linear space in which 

these operators act. The algebra of observables is defined by 

the algebraic relations and some additional conditions, like 

e.g., that a certain algebraic combination of operators be 

essentially self-adjoint. A "larger" physical system can of 

course be reduced into two "smaller" physical subsystems (e.g., 

the quantum mechanical Kepler system can be reduced into the 

hydrogen atom and the electron-proton system). For a particu- 

lar subsystem some observables may be more physical than others 

and for certain subsystems some observables may be eompietely 

unphysical (e.g., for the hydrogen atom one can never prepare 

a state in which the electron position is in a narrow domain 

of space without destroying it). 

Thus for a particular physical system not all mathe- 

matical operators are physical observables. Further, for 

a particular physical system some observables appear to be 

more basic than others,and which observables are more basic 

depends upon the particular physical system. 



Therefore, it appears appropriate to make a distinction 

between observables and operators. 

An observable is a physical quantity and the physical 

definition of an observable consists of either a prescription 

for measuring the quantity itself or a definite expression 

for it in terms of other measurable quantities. 

If not all operators are observables, then not all 

vectors can be physical states~ because the preparation of 

a physical state constitutes the measurement of one or more 

observables, and a pure state that results from this measure- 

ment is an eigenstate of the observables. Thus eigenstates 

of operators which are not observables cannot be prepared. 

Further--and this is connected with 2.)--there are vectors 

which are connected with operators that are observables but 

which are not physically realizable. These are the vectors 

that lie outside the domain of definition of an observable 

that is represented by an unbounded operator~ e.g., the vector 

which would correspond to the state of infinite energy. 

With regard to 2.): The Hilbert space is infinite dimen- 

sional and it is infinite dimensional in a very particular 

sense, namely it is complete with respect to a very particular 

topology, i.e. with respect to a very particular meaning of 

convergence of infinite sequences. Since an infinite 

number of states can never be prepared, physical measurements 



cannot tell us anything about infinite sequences, but at 

best give us information about aribtrarily large but finiie 

sequences. Therefore, physics cannot give us sufficient 

information to tell how to take the limit to infinity, i.e., 

how to choose the topology. All that physics can tell us 

is that we need a linear space sometimes finite but in gen- 

eral, of arbitrarily large dimensions. 

I believe that the choice of the topology will always 

be a mathematical generalization, but then one should choose 

the topology such that it is most convenient. 

At the time when quantum mechanics was developed the 

Hilbert space was the only linear topological space that 

had structures which were required by quantum mechanics. 

That is, it is linear to fulfill the superposition principle, 

and it could accommodate infinite dimensional matrices and 

differential operators. Therefore it was natural that yon 

Neumann chose the Hilbert space when he wanted to give a 

mathematically rigorous formulation of quantum mechanics. 

With fbi's choice, though, he could not accommodate all the 

features of Dirac's formulation 4) of quantum mechanics, 

which von Neumann says is "scarcely to be surpassed in 

brevity and elegance" but "in no way satisfies the requirements 

of mathematical rigour". 

Since that time, stimulated by the Dirac formalism, 

a new branch of mathematics, the theory of distributions, 



has been developed. The abstraction of this theory provided 

the mathematical tool for a mathematically rigorous formu- 

lation of quantum mechanics~ which not only overcomes the 

above mentioned shortcomings of von Neumann's axioms but 

also has all the niceties of the Dirac formalism. 

This mathematical tool is the Rigged Hilbert Space, 

which was introduced around 1960 by Gelfand I) and collaborators 

and Maurin 2) in connection with the spectral theory of self- 

adjoint operators. Its use for the mathematical formulation 

of quantum mechanics was suggested around 19655'6); the 

suggestion to choose the topology such that the observables 

are represented by continuous operators (for the canonical 

commutation relation) was made slightly earlier. 3i) 

We formulate the general framework by replacing the 

yon Neumann axiom which states the one-to-one correspondence 

between observables and self-adjoint operators in the Hilbert 

space by the following basic assumption 7) . 

A physical observable is represented by a linear operator 

in a linear space (space of states). 

The mathematical image of a physical system is an algebra 

A of linear operators in a linear scalar product space. The 

linear space is equipped with the weakest nuclear topology 

that makes this algebra an algebra of continuous operators. 
n 

Also, the operator A = ~ X 2 i' where Xi, i = 1,2,..n are the 
i=l 

generators of A, is essentially seif-adjoint (e.s.a.). 



We emphasize again: An observable is a physical quan- 

tity which is defined by the prescription for its measurement. 

The algebra is the mathematical structure which is defined 

by the algebraic relations between its generators which repre- 

sent some basic physical quantities and by other mathematical 

conditions, like the space in which the elements of the 

algebra act as operators. 

The connection between The quantities calculated in the 

mathematical image, such as the matrix elements (~ A~) or Tr(AW) 

and the quantities measured in the physical world, such as 

the expectation value (average value of a measurement) M(A), is 

given by M(A) = (~,A~) or in general M(A) = Tr(AW). These 

connections are stated by further basic assumptions which 

we will not discuss in this paper. 

Within the framework of the above stated basic assumption, 

The actual physical question is how to find the algebra. 

In non-relativistic quantum mechanics one can usually obtain 

this algebra from correspondence with the corresponding 

classical system. When no corresponding classical system 

exists one has to conjecture this algebra from the expert- 

mental data. 



I. The Algebraic Structure of the Space of States 

We shall treat in detail one of the simplest physical 

models, the one-dimensional harmonic oscillator, in the 

framework of the basic assumption stated in the preceeding 

section. We will give a formulation which easily generalizes 

to more complicated physical models~ and shall remark for 

8) 
which algebras these generalizations are already known. 

9) The algebra of operators for the one-dimensional 

harmonic oscillator is generated by the operators 

H representing the observable energy 

(i) P representing the observable momentum 

Q representing the observable position 

and the defining algebraic relations are 

(i) PQ - QP 
l 

2 
1 p2 m~ Q2 

H = [m + --~-- 

~ m, m are constants, universal or characteristics of the 

system. 

A is an algebra of linear operators in a linear space, 

4, with scalar product I0), (.,')(but ¢ is not a Hilbert space) 

Further: P,Q,H are symmetric operators, i.e. 

(2) (P~,~) = (¢~P~) for all 4 , 4  e #. 

(i) and (2) do not specify the mathematical structure 
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completely. The~e are many such linear spaces in which A 

is an algebra of operators (whether the requirement that 

its topology be nuclear and the weakest puts sufficient re- 

strictions is unknown). Therefore we have to make one 

further assumption to specify the algebra of operators, i.e. 

the representation of (I) and (2). This requirement can be 

formulated in two equivalent ways: 

(3a)H is essentially self adjoin~(e.s.a.) 

or 

(3b)There exists at least one eigenvector of H. 

We will use this requirement in the form (3b), as it is 

this form in which it is always used by physicists. 

Remark: 

We remark that either of these requirements leads to a repre- 

sentation of (I) which integrates to a representation of 

the group generated by P,Q,I (Weyl group); 

3a)by a theorem of Nelson) and 

3b)because it leads to the well known ladder representation an 

ladder representations are always integrablelD(in this parti- 

cular case one can easily see that H in the ladder repre- 

sentation will be e.s.a.). 

The generalization of (3) is the requirement that 

A = Z X. 2 be e.s.a. For the case that A is the enve~ 
l 

loping algebra of a Lie group, this will always lead 



(4) 

to an integrable representstion (Nelson theorem) !2), i.e. 

a representation that is connected with a representation 

of a group (even though no symmetry may be involved), o 

The procedure to find the ladder representation is well 

known and will be sketched only very briefly: 

One defines 

a = -- Q + 

a+= I___ m/~ Q i 

1 1 
(5) N = a+a = ~ H - [ 1 

P 

_ ~ p  

These operators clearly fulfill 

(~, a~) : (a+~,~) fox every #,4 e 

and 

(¢, N¢) : (N¢,¢) 

as a consequence of (2). 

+ 
As a consequence of (I) a and a 

+ + 
(6) a a - a a = i 

for every ~,@ e 

(7a) As a consequence of (3a) 

(Tb) or as consequence of (3b) 

fulfill 

N is e.s.a. 

there exist _ ¢k such that 



(7b) 

(8) 

1o 

N¢ k : k¢ l 

From the c.r. (6) then follows 

+ + 
N(a¢ l) = a a a el : (a a - l) a ¢X = a(a+a - l) ¢k = 

= a(N-l)~l = a(l-l)¢l = (l-l)(a@k) 

i.e. a¢ l is an eigenvector with eigenva!ue (X-l) 

or a¢~ = 0 

Further from c.r. (6) follow 

+ 12 + + Ila ~tl = (¢k,aa ¢1) : (¢l,a a ¢1) + (¢1' l¢l) 

= IIa¢lll 2 + IIelll 2 o as ¢1 ¢ o 

i.e. 

+ 
(9) a ¢1 ~ 0 always. 

Further follows from (6) 

+ + 
(I0) N(a ¢i) = (X+l) a 

i,eo 

(k+l) . 

can obtain eigenvectors 

m 

Cx-m = a el 

with eigenvalue (l-m) of N 

N CX-m = (l-m) %k-m 

+ 
a ¢1 is always an eigenvector of N with eigenvalue 

Starting with CX' which was assumed to exist, one 

m = 0,1,2,... 



11 

After a finite number of steps 

am~ : 0 

Proof: 

(¢l_m ,N ¢~_m ) : (l-m)(¢l_m,@l_m) : (¢l_m,a+a¢~_m) : ]la¢~_ml[ 2 

therefore 

II a~ l _roll 2 
(ll) (l-m) = ...... > 0 

l l ,x ,ml l2  - 

i.e. there exists a #l-m such that 

aCk_ m : 0 

We call ¢o the normalized vector for which a¢ O : 0 

¢o 
i.e. #0 : i~1~011 ; 

[12) N¢ ° : 0 

Then one defines the states 

¢o 

]. + 

: ~ a _ ~ o  Cz ,/z: 

(13) 
l + 2 

(a) ¢o 

t 
1 
l 

........ 1 (a+)n¢o Cn 
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which have the property 

(i~) 

3) 

4) 
For every Cn there exists a Cn+l ~ 0. 

(¢n '¢m) = ~nm 

The linear space spanned by ¢o'¢i''¢n "" we call ~,i.e. 

is the set of all vectors 

= ~ c~'n'( ] Cn 
n=0 ~I, . , 

where (n) g B and m is a natural number which is arbitrarily 

large but finite, 

We cal I 

R. the space spanned by ¢i' i,e. 
l 

Rl" = {e¢iIse~}'(R'l are the energy eigenspaces), 

Using R i instead of ¢i we have a formulation which immediately 

applies when R i is not one dimensional. Then ~ is the algebraic 

direct sum of the R. 
1 

: R 
a{g. i 

In other words Y is the set of all sequences 

¢:(¢o,¢i,¢2,..¢m,000...) with ¢i ~ Ri 

where the algebraic operations of the linear space are 

defined by 

¢ + @ : (¢o + @o' ¢i + ~I' "'" ) 

~¢ = (~¢o' ~¢I "" ) 
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The scalar product is 

m 

(#,~) = Z (%i,~i) 
i=o 

And the norm is 

ii ii2 m 
= Z (Cirri) 

i=O 

As the sum goes only up to an arbitrarily large but finite 

number m the question of convergence of the sum of numbers 

(~i,¢i) does not arise. 

is a linear space without any topological structure. We 

now equip ~ with a topology, i.e. we construct a linear 

topological space. 



II, The Topological Structure of The Space of States 

A set ~ is a linear topological space(in which the first 

axiom of countability is fulfilled)' iff 

I) ~ is a linear space 

II) For a sequence of elements of ~ the notion of a limit 

element is defined (the limit is unique and a subsequence 

of a convergent sequence converges to the same limit 

point) 

III) The algebraic operations of the linear space are continuous 

i.e. l)a) If # ~ ~n ÷ ~ ~ ~ then also ~n ÷ ~¢ for e a 

b) If ~ ~ a n ÷ ~g~ then also en~ ÷ ~ for every ~g# 

2) If ¢n+¢ and ~n ÷ ~ then Cn + ~n ÷ ¢+~ for 

Cn,~n,¢,~ E ~; n : 1,2, .... 

This is not the most general definition of a linear topological 

space but it is sufficient for our present purpose (we will 

later on also use spaces in which the first axiom of counta- 

bility is not fulfilled). 

In a given linear space the convergence can be defined 

in various ways leading to various linear topological spaces. 

All the topological notions like continuity, denseness, bound- 

edness, closure, completeness...depend then on the definition 

of convergence. 

We shall introduce into ~ three different topologies. 
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As a first example we introduce into ~ the well known 

Hilbert space topology T H (ane can check that this really 

fulfills the conditions la) ib) and 2) of the definition. ) 

Def: 14) 

(i) qb T ÷ ~ fom Y ÷ ~ ÷÷ I I~y - ~II +0 

To undemstand the melation between 

space H let us intmoduce the following notion: 

Def: A sequence {x n} of elements in 

a space with a norm (Nommed Space) is called a Cauchy 

sequence with respect to THif fore evemy C > 0 there exists 

(2) an N such that l lXn - Xmll < g for every m,n > N. 

Def: A linear topological space R is called complete if 

every Cauchy sequence {x } has a limit element x which is 
n 

an element of the space R. 

If a space is not complete it can be completed by 

adjoining all limit elements of Cauchy sequences to it. 

It is easy to see that ~ is not TH-complete: 

Let us consider the infinite sequence 

(3) h = (hl~ h 2, h 3 ... h i ...) with h i e R i 

h. ~ 0 for all i 
l 

2 

i=0 

for y-~. 

and the Hilbert 
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From this follows 

llh n II ÷ 0 for n ÷ ~ and 

z l l h i i l  2 ÷ o 
i=n+l 

for n + 

h is not an element of ~, because it is an infinite sequence. 

Let us consider the sequence 

SI, $2, S 3 .... with S i £ 

where 

4) Sn = (hl, h 2, ... hn, O, 0 .... ) 

As S - S = (0,0, ... 0~ hn+l~ hn+ 2 ..... hm, 00 ..... ) n m 

we have 

I l S n - S m l  I = I l h n + z + h n + 2 + h m l l  ÷ 0 f o r  n ~  

i.e. {S } is a Cauchy sequence. 
n 

The TH-limit element of S n 

T H 

S ÷ h  
n 

b e c a u s e  I IS n - hl  12 = Z I l h i 112 
i:n+l i 

is h: 

÷ 0 for n+~ 

But h ~ •. 

If we adjoin to • all the limit elements of Cauehy sequences 
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i.e. take in addition to the elements 

= (¢I~2 ' .... ~n 0 0 0 .... )~ n arbitrarily large, the 

elements h of the kind defined in (3), then we obtain a com- 

plete notched space in which the norm is given by the scalar 

product; this is the Hilbert space H. Thus ~ the Hilbert 

m) 
space H is the completion of~ with ~espect To The topology 

defined by (I). 

Def. A subspace S of a complete topological space X is called dense 

if 

S O {all limit points of S} 

Thus ~ is a TH-dense subspace of H. 

= X .  

The space {4 is the space of all h = (ho,h I ...), h i c R i 

which fulfill (3)~ this space is written as 

H = E @R. 
l 

i = c  

and is called the Hilbertian direct sum or orthogonal 

direct sum of the R.. 
l 

Thus the Hilbertian direct sum is the completion of 

the algebraic direct sum with respect to TH. 

We now introduce into T a new topology which we call 

T@~ T@ is defined in the following way: 

We take the original scalar product ( • , • ) and define 
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the following quantities 

(6) (¢,~)p = (¢,(N+I)P~) 

= /(~,~)p and II $I Ip 

p = 0,i,2~ ... 

Remark: Before proceeding we note some properties of the operator 

N~ N is essentially self-adjoinT. This is easily proved 

using one of the criteria of essentially self-adjoinTness: 

Lemma: An operator A is e.s.a, if (A+I) -I is continuous 

and has a dense domain in H. 

! 
The spectrum of (N+l) -I is n-~' consequently it is con- 

tinuous. Its domain is ~ which is dense in H. Conse- 

quently N is e.s.a.. As a consequence N+l is e.s.a. 

Further (N+l) p for every p is e.s.a. 16) 

From the spectrum of (N+l) p one sees immediately that 

(N+l) p is positive definite. From This it is easy to see 

that (¢,~)p for every p fulfills the condition of a scalar 

product and 

tloi 1t, I l l !  tl, 1125 . . .  

Remark: Further, these norms are compaTible~ i.e., if a sequence 

converges with respect to one norm and is a Cauchy sequence 

with respect to a/%other~ then it also converges with respect 

to This other norm. o 

A space in which a countable number of norms (scalar- 
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products) are defined is called a countably normed (countably 

8~alar product) space. 

We now define T~ by: 

Def: 

T~ 
(7) Cy ÷ # ÷÷ lie T - ~II ÷ 0 for every p. 

P 

From this definition one immediately sees 

• ~ T H 
(8) From Cy ÷ 0 ÷ follows ~y + 0 but not vice versa. 

Therefore T¢ is called stronger (finer) than TH, and T H is 

called weaker (coarser) than T#. 

Def: A sequence {x } is called a T¢-Cauchy sequence if for every 
Y 

p and for every e > 0 there exists an N = N(c~p) such that 

x II for every >N. 
P 

There are more TH-Cauchy sequences than T#-Cauchy se- 

quences because for x H - Cauchy sequences (9) needs to be 

fulfilled only for p = 0. 

We eomplet6~ with respect to T~, i.e. adjoin to ~ the 

limit points of all r#-Cauchy sequences. The linear topologi- 

cal space that we obtain by completing ~ with respect to T# we 

call 4. 

Then 

C ~, • is ~-dense in ~. 
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¢ is called a countably Hilbert space. As there 

are more TH-Cauchy sequences than T¢-Cauchy sequences it 

must be that 

(10) ~ C ~ C H. 

Thus ~ is T¢~dense in ¢ 

is TH-dense in H 

and # is TH~ dense in H, as already ~ is TH- dense in H • 

To get a feeling for ¢ let us see which of the infinite se- 

quences (3) that are elements of H are also elements of ¢. In orde~ 

that h : (ho,hl,..) ~ H be a limit point of a T¢-Cauchy sequence {S 

with Sn = (h I h 2 ... hn 000) s 

i.e. in order that: 

3¢ 

S ÷h 
n 

one must have 

IIS - hll ÷ 0 for every p, i.e. 
n 

P 

((Sn-h),(N+i)P(Sn-h)) ÷ 0 for every p, (Ii) 

i.e.~ one must have 

Z (~(N+I) p h i ) = Z (i+l)Pllhill 2 ÷ 0 
i=n+l i=n+l 

for every p. 

Therefore, only those h a H are ~ -limit points of T¢-Cauchy se- 

quences of elements of ~ ~that means elements of ¢~ for which 

<i+l)Pl lhil 12 
i = o  

< 
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# is called the T#-direct sum of R n and is written 

12) ~ : Z ~ R 
n 

n=o 

To see what the use of the various spaces might mean 

for physics we recall that R n are the energy eigenspaces 

with energy value 

= ~(n + 1 (13) E n ~) 

Thus ~ describes states with arbitrarily high but 

finite energy. H contains the'~nfinite energ/'state, and 

contains states which have anr[nfinitely small admixture of 

infinite energy states". 

Clearly physics can only tell us something about ~. 

In fact for most real physical systems, e.g. diatomic mole- 

cules, whose idealization is the harmonic oscillator s only 

the very lowest energy levels are relevant% for higher energy 

the diatomic molecule is no longer a harmonic oscillator and 

finally not even an oscillator. H and @ are mathematical 

idealizations, though ~ appears "closer" to reality. 

The question there is, why do we want these mathematical 

idealizations and why do we have a preference for one over 

the other. 

The advantage that # has over H is mathematical convenience, 
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which can be vaguely summarized by saying # admits the Dirac 

formalism. Two aspects of this formalism are: i) All algebraic 

operations with the operators are allowed and no questions with 

respect to the domain of definition arise. 2) For every e.s,a. 

operator there exists a complete system of generalized eigen- 

vectors, i) follows from The fact that all elements of The 

algebra A are continuous operators with respect to T# and 

therefore uniquely defined on the whole space #.17) 

To show This it is sufficient to show that P and Q or 

+ 
a and a are continuous because of the Theorem: The product 

and sum of continuous operators are continuous operators. 

Thus in genez,al an algebra is an algebra of continuous 

operators iff the generators are continuous operators. 

We recall that (in spaces in which The Topology can be 

defined by the convergence of sequences (i.e. spaces with 

the first axiom of countability)) an operator A is continuous 

if for all sequences {~y} with $y+0 it follows that A$7÷0. 

To prove that a (and a +) is T~_continuous let us consider 

+ 
a and a on ~. 

We use the lemma (proved in Appendix ]~: For every ~ ¢ 

(i~) (~, a(N+l) p a+~) < k(~, (N+I)P+I~) 

where k is some constant~ k < ~ . 
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T~ 
÷ 0 for every p Proof: Let ST ÷ 0 as y + +÷ II#vIIp 

(4¥ ) ÷ 0 for every p. (15) ÷+ ~(N+I) p ~y 

To show that 
T¢ 

+ 
a Cv + 0 we have to show that 

(18) IIa + ¢¥[Iq+ O for every q,i.e, that 

(a+~y,(N+l)q + + a Cy) = (~y, a(N+l) q a %y) ÷ 0 for every q. 

By (!~): 

(~y, a(N+I~ q a+¢ ) ~ k(~y,(N+l)q+l%) 

but by (15) the r.h.s, of this inequality ÷ 0, consequently 

also the Z.h.s. which proves (18). 

We remark that the convergence of 

II a+ ~yII ÷ 0 for y ÷ ~ for a fixed q follows from the con- 
q 

vergenee of I I~ I I ÷ 0. Therefore in the case of a finite 
~q+! 

numbem of norms a + will not be a continuous operator. As 

the topology in the case of a finite number of norms is equiva- 

lent to the topology given by the highest norm (toe. sequences 

that converge with respect to one converge also with respect 

+ 
to the other and vice versa) this fact implies that a cannot 



24 

be a continuous operator in the Hilbert space topolog~ which 

is well known. The proof of The continuity of a is analogous. 

+ 
Therewith we have shown That a a/%d a are continuous operators 

on The dense subspace ~ C ~ and can therefore be uniquely 

extended to operators in The whole space ~8)We denote the operator~ 

+ + 
a~a , P,Q..exTended To the whole space ~ again by a, a , P,Q... 

+ 
a and a and therewith The whole algebra are defined en The 

whole space ¢ and domain questions do not arise in the algebraic 

operations. 

The T C-continuous operators P,Q,H considered as operators 

19) 
in H are not closed operators (they are T#-continuous and 

consequently T¢-closed but not TH-Closed), because if f ¢~ 
Y 

~H 
and fy÷f but f%#~then AfTc# for every y but A is not defined 

T H 
on f. If Af + g then we define Af by 

¥ ~f = g .  

We can do this for all feH which are ~-limit points of some 

sequences f e~ and for which Afy T H-converges. The operator 

defined in this way, i.e. whose domain D(~) is the set of 

all These f~ ,is The closure of A in the completion of 

to H. 

Thus in co.~respondence to the relation (I0)between The 

spaces: 

we have The relation 

9CH 

(17) A C 

between the operators. 
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(however in general D(A) @ H). 

So far ~ we know of the operators P,Q,H(or N) That they 

are T~-conTinuous symmetric operators on #. 

Therefore P+ D P (i.e. D(P +) D D(~)) 

(18) and Q+ D Q, 
~) 

H(and N) is e.s.a, and Therefore 

(19) H + = H (N + = N) 

However as a consequence of (19) it follows that also 

P,Q, are e.s.a., i.e.: 

(20) P+ : 

Q+ = 

Remark: 

D(P +) = D(P) 

H+I is, except for some constant factors, The Nelson operator, 

which is because of (19) e.s.a.. Therefore --as mentioned before-- 

P~Q~I are The group generators of a group of transformations 

(Weyl Group). 

As a consequence of the fact that P~Q are elements of The 

Lie algebra of This group it follows then that P and Q are also 

e.s.a., by a theorem of Nelson and Stinespring~)20)o 

We now turn to The 2ndaspect of The Dirac formalism, The 

existence of a complete set of generalized eigenvectors, which 

follows from the fact That for The operators in ~ The nuclear 

spectral theorem applies. The explanation of this requires 

some further mathematical preparations. 

~)EiTher as a consequence of assumption (3b) as proven in 
Remark on p. 12 or by assumption (3a). 
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Def: A bounded self-adjoint operator B is Hilbert~Schmidt iff 

B = Z~kP k where the projections Pk project on finite dimen- 

sional spaces Hk and Z(Ikkl dim Hk)2 < 

Instead of giving The original definition of a nuclear 

space 21) we shall use a Theorem of Roberts 22) which gives 

a necessary and sufficient condition for ~ to be nuclear. 

Def: $ is a nuclear space iff there exists an e.s.a. T~- conti- 

nuous operator A c A, whose inverse is Hilbert Schmidt. 

It is now very easy to see that our ~ is nuclear, because 

N is e.s.a., the spectrum of N -I is ~ n = I~2~3,... and R 
n 

is one dimensional~ thus Z(!) 2 < ~. Thus N is the operator 
n 

that fulfills the condition of the above definition. 

Summarizing, The space ~ constructed above is a linear 

topological nuclear space in which all elements of the algebra 

are continuous operators• 

Remark concerning generalizations: 

The construction of a nuclear space described above is 

immediately generalized to a more general algebra. The analogue 

of the Lemma ~4) 

(IW) (¢, X ( A+l)p X ¢) < k(~(A+I)P+I~) 

• and A= ZX~ (Nelson operator) where X is one of the generators X I l 

holds for all enveloping algebras (Lemma by Nelson)• Therewith 

the continuity of the algebra in a linear Topological space in 

which the topology is defined by The countable number of scala~ 
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products 

(¢~)p = (~(A+I)P~) 

follows immediately. Further if A is e.s.a, then all the 

symmetric ll) generators are also e.s.a. (Theorems by Nelson 

and Nelson and Stinespring). 

(14 T) is much stronger than required for the proof of 

the continuity of the generators. The continuity of the gene- 

rators (and therewith the whole algebra) can already be 

proved if instead of p + 1 on the r.h.s, of (14') one has p+n, 

where n is any finite integer. Therefore it appears 

that the continuity of the generators can already be proved 

for any finitely generated associative algebra. 

The nuclearity is a much harder property to establish. 

It has been proven for the cases that the algebra is the 

enveloping algebra E(G) of the following groups G: 

G nilpotent (because then E(G) is isomorphic to the enveloping 

algebra generated by P , Q~,= = 1,2,...m with [Pe,Q8] = ~ 6 8I 
l 

for some m. (Theorem by Kirillov) 23) and we have just an m dimen- 

sional generalization of the above described case) 

G semi-simple (A. BGhm~4) 

25) 
G = A~K semidirect products with A abelian and K compact.(B. Nagel) 

G Poincare group for some of the representations (B. Nagel~5~ 



III. Conjugate Space of # 

An antilinear functional F on a linear space ~ is "a 

function~ the values F(#) = <# IF> of which are complex numbers, 

which satisfies : 

or in the other notation 

(1) <~¢+s~IF> = J<¢IF> + ~<~qF> 

The functional F is called Y-continuous iff from 
e 

(2) $y ~ @,y + ~ follows F(¢y) ÷ F(@) 

where ÷ means convergence of complex n umbems (for every 

a > 0 there exists an (q~)(£) such that IF($){ < £ for all 

withl l¢l lq <6 >- 

The set of antilinear functionals on a space ~ may be 

added and multiplied by numbers according to 

<,I~FI÷aF2> : ~<,IFI>÷S<,IF 2 > 
(s) 

(~FI+~F 2) (¢) = eFI(¢)+SF2(¢) 

The functional 

~FI+SF 2 defined by (3) is again a lineam functional. 

Thus the set of anTilinear functionals on a linear space 

forms a linear space. This space is called the algebraic 

dual or algebraic conjugate space and denoted ~X. 
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Continuous antilinear funcTionals have not only to 

fulfill (i) but also (2), therefore the set of continuous 

antilinear functionals, which also forms a linear space, is 

smallem Than The set ~X and depends --like all Topological 

notions -- on The particular Topology that has been chosen. 

We shall denote the set of all T¢- continuous functionals 

by ~X and the set of all TH-continuous functionals by H X. 

As every sequence {¢y} with #y + 0 has the property ¢y ~H0 

i.e. There are more TH=convergent sequences than T#-convergenT 

sequences and ~(#v ) ÷ F(0)) = 0 must be fulfilled for all 

TH-convergent sequences if F = F(~)E H~ and for all T~-con~ 

vergent sequences if F = F (¢) e CX the set of F (H) e H X will 

be smaller Than the set of F(@)e CX (because There are more 

stringent conditions on elements of H x) . Therefore: H X 

is the smallest set and ~X is the largest set of The sets 

H X, cX, ~X. 

In a scalam product space each vector fe~ defines an 

antilinear functional by 

(5)<¢IF>:F(¢) def (¢,f) 

It is easy to see that F defined by the vector f as given in 

(5) fulfills the condition (i) if (¢ ~ f) fulfills the con- 

diTions for a scalar product. 
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Further if ~y + ¢ then for every f e • (even for every 

f e H) (~y~f) + (~ ~f) (every strongly convergent sequence 

converges also weakly). Thus the functional defined by (5) 

fulfills F(~y) ÷ F(~)~ i.e. it is a continuous antillnear 

functional. Thus the scalar product defines a continuous 

antilinear functional. 

In the Hilbert space the converse is also true~ i.e. 

any antilinear TH-continuous functional can be written as 

a scalar product according to the F~echet-Riesz theorem: 

For every antilinear TH-Continuous functional F (H) 

there exists a unique vector f ~ H such that 

(6) <¢IF(H)>=F(H)(¢)=(¢, f) for all ¢ e H 

Therefore we can identify the Hilbert space H and its conju- 

gate H X by equating F ~ H X with the f e N given by (6). 

Then with (II~9) we have the situation: 

(7) ~ C # CH = H X 

For TH-continuous functiona!s F (H) the symbols <I> and (,) 

are the same~ after the identification F (H) = f~ 

(9) <~[f> : (%,f) 

However for the larger class of T#-continuous functionals 

F the symbol <%IF> is defined~ whereas (%,F) is not unless 

~X F ~ is already e ~X in which case we identify: 

(10) <~IF> = <~IF(H)> = (~,F) 
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In ~X one can introduce various topologies and there- 

with various meanings of convergence of countable sequences. 

An example is the weak convergence (in analogy to the weak 

convergence in H) : 

Def: A sequence of functionals {Fy} C~ X 

converges (weakly) to a functional F iff 

(Ii) <~IFy > + <~IF>~ Y + ~ for every ~ E ~. 

One can show that ~X is already complete with respect to 

The topology TX of this convergence. 

Remark: ~X is a space in which The topology cannot be com- 

pletely described by the description of the passage to the 

limit of countable sequences (~X does not satisfy The fimst 

axiom of countability and is, therefore, a more general topo- 

logical space than those defined by our definition in II). 

Therefore we cannot attempt to prove the following statements.283o 

As #X is a linear topological space we can consider the 

T X -contanuous antilinear functionals ~ on ~X i.e. the set 

#XX of all those functions on #X which satisfy 

(i x ) ~(~Fl+SF 2) = ~ ~(F I) + [ ~(F2),FI,F2e~X; ~,Se~ 

or in other notation 

< Fl÷B 2r;> = 
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and 

X 

(2 x) ~(F 7) ÷ ~(F) for every Fy ÷ F 

#XX is a linear topological space if addition and multiplica- 

tion are defined by: 

<rl<~<~l+B<4> = ,~<rl<Tl> + B<rl {2 > 

and (weak) convergence by: 
~ XX ~ 

(ii x) ~ r+ ~ 17 Y ~ ++ <Fl~T> + <F > for every F e ~X 

One can prove 27) that the~e co?~esponds an antilinear 

continuous functional ~ on ~X to each element # e # defined 

by the equation 

(12) 

o~ 

(12) 

+(F) = F(~) 

<rl ~> -- <4>TF> 
and that the convergence defined by (ll x) agrees with the 

convergence with respect to T~. Thus, with the identification 

= ~ given by (12) , 

~XX = 

(# is meflexive). 

The Hilbert space H is certainly ?eflexive (because already 

H X = H) and as the functionals in H are given by the scala~ 

product the relation cormesponding to (12) is the property 
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of the scalar product: 

(13) (f,h) = (h,f) 

For all T#-continuous functionals F on ~ which are also 

T H -continuous functionals f on # we identify f with F or 

<FI = (fl. And as there are more T#-eontinuous functionals 

we have the situation 

(14) H x C ~X 

which with (7) gives 

(15) ~ C H CO x 

This triplet is called Rigged Hilbert space or Gelfand Triplet. 

For every continuous linear operator A in ~ one can 

define the adjoint operator A X in ~X by: 

(16) <¢IAXIF> : F(A¢) = <ACfr> = <F]A¢> 

If A is a continuous operator in ~ and F is a continuous 

antilinear functional then A X is a continuous operator in 

#X i.e., it has in particular the property: 

(17) AXF + AXF for all F + F. 
Y 7 

In particular the adjoint operators PX,QX,HX of the 

operatoms P,Q,H are TX-continuous operators in #X 

Remark: We have defined a continuous operator only by the 

convergence of sequences. This is possible only in spaces 

with the first axiom of countability. Though we have not 
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given the general definition of continuous and bounded operators 

we shall remark on the connection between Them as these two 

notions are used interchangeably. In spaces with the first 

axiom of countability every continuous operator is bounded and 

every bounded operator is continuous. The Hilbert space and 

the space ~ are such spaces. In general, e.g. in the space 

~X continuous operators are not bounded~ and the condition (17) 

is only necessary for A x to be a continuous map,o 

For every T~-continuous symmetric operator A we have, 

in correspondence to The relation (8) between the spaces 

(15) # C H C ~X 

(18) the relation between the operators A C ~ ~ A + C A x 

and AC ~: k+C A x 

if A is e.s.a. 



I~ Generalized Eigenvectors and Nuclear Spectral Theorem 

Before we define generalized eigenveetors of an operator 

A in the space ~ let us recall the situation in The HilberT 

space H. 

A vectom h ~ H is called an eigenvector of an ope~atom 

A on the Hilbe~t space iff 

Ah = ah 

where a is a number. In general, it is not possible To find 

fox every operator on H an eigenveetom. In fact it is well 

known that the operators P and Q do not have any eigenvector 

in H. Yet physicists, following Dirac, always work with 

"eigenveetors" of P and Q 

PIp> : plp> 

and use The assumption that these eigenvectors form a "complete" 

system in The sense that 

f Ip><pl : l 

We will now give a definition and a Theorem That provides a 

mathematical justification of this procedume. 

Def: Let A be an operatom in ~. A generalized eigenvector 

of The operator A corresponding to The genemalized eigenvalue 

X is an antilinear functional, F e ~X such that 

(1) F(A¢) = <A¢IF> : <$1AXIF > = ~<$1F > 

holds for every ¢ g ~, which may be written in The form: 

(i,) Axlr> : Ir> 
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We shall use this definition only for the case that A 

is e.s.a. (often one defines the generalized eigenvector 

by F(A+~) = %F($) where A + is the adjoint operator of A), 

Let us assume A has generalized eigenvectors in the 

Hilbert space i.e. F in (I) is an element of HX. Then (i) 

reads 

(2) ~A~I~ = (A¢~f) = (¢,A+f) = ~(~,f) 

for every ~ g ~ and consequently (since ~ is TH-dense in H) 

(3) A+f=~f and if A is e.s.a. A+f = Af = ~f = ~f 

Thus a generalized eigenvector which is an element of 

the Hilbert space is an ordinary eigenvector corresponding 

to the same eigenvalue (for the case That A is not e.s.a. 

it is an eigenvector of A+). 

Before we formulate The nuclear spectral theorem let 

us start with a few remarks. 

Every self-adjoint operator A in a finite dimensional 

Hilbert space has a complete system of eigenvectors. I.e. 

there exists an orThonormal set of eigenveetors h(l.)=ll i) 
l 

(4) A hcl.)=lih(l.) (hck.), h(k.))=(k i II i) = gi'i 
l l l l 

such That for every h e H 

n 
(5) h = Z Iki)(lilh) n = dim H 

i=l 

H 
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The set of all eigenvalues A = {~l,12,...In} is called the 

spectrum of A. 

For an infinite dimensional Hilbert space this statement 

is no more true, in fact we know that there are operators that 

have no eigenveetor in H (e.g. Q). The spectrum of an opera- 

tor A in H is defined as the set A of all those i for which 

A-A1 has no inverse. The spectrum of a self-adjoint operator 

is a subset of the real axis 28) If the self-adjoint operator 

A in the infinite dimensional Hilbert space H has only a dis- 

crete spectrum, i.e. if A = {If,12,...} then the above state- 

ment carries over to the infinite dimensional case. To avoid 

complications which are inessential for the principal problems 

and inapplicable for the special problem of the one-dimensional 

harmonic oscillator we restrict ourselves to cyclic operators. 

Def: A operator A is cyclic if there is a vector f ~ H such 

that Akf~ k = 0~I~2~... span the entire Hilbert space. It 

is clear that the operator P and Q are cyclic because Qk~ = 
n 

h (a + a+) k # ~ k = 0,i~2..., any n span the entire H. 2 ~  n 
The generalization of the above statement to the ease 

of a cyc!ie self adjoint operator with discrete spectrum is 

given by the following spectral theorem: 

There exists an orthonorma! set of eigenvectors 

~) h~i = l~i ) ~ H 
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Ahl. = lihl., k i e A, 
1 i 

such that for every h e H 

(B) 

h = Z h%i(h%i,h) = Y.{%i )(%i{h) 
i:l i 

: ~Ad~(l) !l)(Xlh) 

(hk-'hl.) = ~I.I. 
l 3 13 

The measure p is concentrated on the eigenvalue I. e A and 
l 

one point sets have measure one~ i,e. D{l. } = 1 
l 

The operator H is an example of such an operator. We 

remark that all eigenvectors (7) of A appear in the decom- 

position (8), 

If A has continuous spectrum, then there are no such 

eigenvectors in H. However a generalization of the above 

statement holds in the form of the following Nuclea~ Spectral 

29) 
Theorem: 

Let @ C H C @)< be a rigged Hi!bert space and A a cyclic 

e.s.a. T@-continuous operator. 

generalized eigenvectors 

(9)  

(lO) 

Then there exists a set of 

A×IX> = XlX>,~eA i .e.  <A¢tFk> : <¢IAXFk> : k<+lYk> 

for every ¢ e 

such that for every ~,~ e @ (~ e ~XX) and some uniquely de- 

fined positive measure ~ on A 
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(ll) (~,,~) = /du(X)<,IFX><FXI~> = /dv(X)<*IX><XI~> 
A A 

which is written formally 

A 

If we set ~ = ~ in (ii) then we see that from the vanish- 

ing of all components <ll~ > of the spectral decomposition of 

corresponding to the operator A, it follows that II~II = 0 

i.e. that ~ = 0. Because of this property the set of gen- 

eralized eigenvectors II > occurring in (Ii) or (12) is called 

complete (in analogy to the completeness of the system of 

ordinary eigenvectors in (8)). 

This spectral theorem assures the existence of a com- 

plete set of generalized eigenvectors of the operator Q 

(and P), i.e. of generalized vectors that fulfill: 

(13) QXIx> = xlx>, pXIp>= PlP> 

and with the help of which every ~ e # can be written 

(14) ~ = / d~(X) Ix><xI¢ >, ¢ = fd~(p) Ip><pI¢> 
x spectrum P 

where X =spectrum Q. 

The fact that there is a complete set of eigenveetors 

does not tell us what this spectrum is. 
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(lS) 

It is widely known that the spectrum of Q and P is the 

real line. However it is not so widely known that the deri- 

vation 30) of this is far from trivial. The reason for This 

is that the problem of the physicist was the reverse of the 

problem described hez'e, namely to find the defining assumptions 

(I~l) and (I~3) ~ from the spectrum of Q whioh was assumed to 

be the real line. (of. remark on p. 49). 

We will in The following only describe the results, 

the derivation of which will be given in the Appendix V. 

The set of generalized eigenvalues of Q and P is the 

complex plane. The spectrum of Q and P is the following 

subset of The set of generalized eigenvalues. 

spectrum Q = {xI-~<x<+'} 

spectrum P = {pl-~<P <+~} 

In general, an e.s.a, operator has more generalized 

eigenvectors (and more generalized eigenvectors that are 

continuous functionals) than appear in the spectral decom- 

position (Ii)~ (!2). 

The measure in (14) is the ordinary Lebesgue measure 

so that after normalization 

<x'Ix> : ~(x'-x) 

we have 

(l~) ~ = { dxlx><xl,> 
--OO 
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Every vector ~ e ~ is fully characterized by its com- 

ponents <xl~> with respect to the basis of generalized eigen- 

-~ o 

vectors Ix> (in the same way as every vector x in the 3-dimen- 

sional space can be equivalently described by its components 
3 

i ÷ ÷ i ÷ 
x with respect to 3 basis vectors e i according to x = 7~ x e i 

i=l 
or a vector h ~ H by its components (hi~h) with respect to a 

complete basis system h i i=i~2,...). The function <xl~> 

is called a realization of the vector ~ and the set of func- 

tions <xI~> for every $ e ~ is called a realization of The 

space ~. 

The realization of ~ is the space S of all infinitely 

differentiable functions $(x) = <x l~whieh, together with 

their derivatives Tend to zero for IxI~ more rapidly than 

any power of i~ I ( S chwar~z Spa ce). 

In this realization of ~ by S the operator Q is realized 

by the multiplication with x and the operator P is realized 

by the differential operator in S: 

<xlQl*> = x <xl*> 

(17) 

<xIPf*> = ~_a <xJ,> 

The elements of the algebra A are then realized by 

d 
polynomials in x and ~ . 

We can, according to (III,!2) consider ~ in (14) or 
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(ll) as the functional on the space #X at the element F e ~X: 

: <riP> : 

and write 

<18> <FI;> = Idx <rlx><xl;> 

The l.h.s, of (187 is well defined and, consequently, so is 

the r.h.s. However one factor in the product of the inte- 

grand~ <FIX> has not been defined so far. We define <FIx> by 

(!8)~ <?Ix > is called a generalized function or distmibution. 

If the space ~ is realized hy S, then the space #X is 

realized by the space of all <Fix>, F a ~X defined by (18). 

This space S X is called the space of tempered distributions. 

In this realization the space H is realized by the space 

of square integrable functions L2(x). In distinction to the 

Hilbertspaee formu!ation~ in which the momentum operator 

is realized by the differential operator on the subset of all 

d 
differentiable functions h(x)eL2(x) for which also ~h(x)eL2(x)~ 

the momentum operator P in the present formulation is realized 

by the differential operator on S. 

We remark, that in the derivation of these results 

<Appendix V) one has to use the defining assumption (I,3). 

This is a natural assumption for the harmonic oscillator, 

because H is the energy operator of the harmonic oscillator. 

For other physical, even if one assumes that its algebra be 
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generated by Pi' Qi fulfilling the canonical commutation 

2 2 
relation (I,l), the requirement that the operator ZPi+Qi 

be e.s.a, need not be such a natural assumption and therefore 33) 

(17) not the most natural possibility. Also it may well 

be that for other physical systems the algebra of observables 

may be more naturally defined by other operators than the 

?i and Qi" 

~emark concernin~ Generalization 

For the case of a more general algebra of linear operaToms 

the e.s.a, opemators are not cyclic (more than one quantum 

number is needed to characterize the pure states). One then 

needs a complete system of commuting operators to obtain a 

complete set of generalized eigenvecto~s. 

{~}, k = 1,2 ,...N is a system of commuting operators iff 

i.) [A i,~] = 0 fo~ all i / k 

N 
2 is e.s.a. 2.) ~ A k 

k=l 

A k is a complete commuting system iff there exists a vector 

¢ E~ { such that 

{AJ) IA E algebra generated by {Ak}} 

spans the space ~(or H). 

An antilinear functional F on ~ is a generalized eigenveetor 

for the system ~ if for any k = !,...N 

i~r -- [Ck) r 
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The set of numbers k = (k(1),k (2),...k (N)) are called gene- 

ralized eigenvalues corresponding to the generalized eigen- 

vector F l : ll(1)k(2).k(N)>. There exists a complete system 

of genema!ized eigenvectors according to the general form of the 

Nuclear Spectral Theorem: 

Let {A k} k = 1,2,..N be a complete system of commuting 

e.s.a. T#-continuous operators in the rigged Hilbert space 

~Cf/  C ~  X 

Then there exists a set of generalized eigenvectors 

II l''kN> E ~X 

~ ll(1) x(N)> : k(k) Ix(1)..x(N)> 

l(k) 6 A(k) = spectrum % 

such that for every ~ 6 ~ and some uniquely defined measure 

on A = A (I) x A(2).. A (N) 

; : f dUrX) 
A 

This theorem gives the precise formulation of the famous 

Dirac conjecture if the starting point is a precisely defined 

algebra. 

The mathematical task that has to be solved if one 

starts with a well defined algebra is to find a complete corn- 
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muting system and the spectrum of this complete commuting 

system. The problem to determine when a system is complete is far 

from trivial. Already for the simplest cases of enveloping 

algebras of group representations the number N is not inde- 

pendent of the particular commuting system, i.e. if A1.. ~ 

is one particular complete commuting system then another 

commuting system containing an operator B 1 may require N+l 

32) 
operators B1, B2...BN+ 1 in order to be complet@. 

The problem of a physicist is usually the reverse of this 

mathematical problem. From the experimental data he finds out 

how many quantum numbers are required, and what are the 

possible values of these quantum numbers. This gives him 

the complete commuting system {~} and its spectrum. He 

Then conjectures the total algebra A by adjoining to {~} 

a minimum number of other operators such that the matrix 

elements of elements of A calculated from the properties of 

this algebra agree with the experimental values of the corres- 

ponding observables, o 

Summarizing: Using the rigged Hilbert space we have 

reproduced the main features of the Dirac formalism. For the 

particular case of the harmonic oscillator we have in fact 

reproduced everything of Diracs formalism. The difference 

between this formulation and the usual Hilbert space formu- 

lation appears to be minor from a physicists point of view 

but is essential from a mathematical point of view and leads 



46 

to tremendous mathematical simplification; in fact it justi- 

fies the mathematically undefined operations that the physi- 

cists have been accustomed to in their calculations. 



APPENDIX I 

LINEAR SPACES, LINEAR OPERATORS 

A linear scalamproduct space @ is (-not necessamily a space 

of functions but-) a set of mathematical (imagined) objects 

for which three operations are defined. 

I Addition of elements of ~, which has the following 

pmopemties : 

(i) Fore h,f,g e @ f + g S ~ and 

f + g = g + f; (f + g) + h = f + (g + h) = 

f + g+ h 

(ii) Theme exists an elem~fc 0 s ~ such that 

f + 0 = f 
def 

(iii) h + f = g has a unique solution h = g - f 

II Multipliciation by complex numbers, which has the 

following p~opemties 

~(f + g) = ~f + ~g, for f,g s @, ~ e ~ = complex numbers 

~(Sf) : (eB)f; 0f = 0 

III Scalar product of two elements ¢~9 e ¢ i.e. with 

every pair of elements ~,9 e @ theme is associated 

a complex number (~9) with the pmopemties 

(i) (~,~) = (9,¢) 

(ii) ((~¢i + B~2'~) = ~(~I '~) + ~(¢2 '~) 
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(iii) (¢,¢) ! 0 with (¢~¢) = 0 only for ¢ = G 

An linear operator A is (-not necessarily a differen- 

tial operation but-) a map from (a subset of) ~ into 

which has the property: 

A(~I fl + ~2 f2 ) = ~i Afl + s2 Af2 

0~,i~.0~ 2 ~ ~ fl,f2 C 
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APPENDIX II 

ALGEBRA 

A set A is an (associative) algebra with unit elemen± 

(i) A is a linear space over ~. 

(ii) For every pair A,B ~ A, there is defined a product 

AB c A such that 

(AB)C = A(BC) 

A(B + C) = AB + AC 

(A + B)C = AC + BC 

(eA)B = A(~B) = ~ AB 

(iii) There exists an element 1 g A such that 1A = A for 

allAe A. 

A set K of elements of A is called a system of generators 

iff the smallest closed subalgebra with unit which contains 

K coincides with A. The element I is not to be called a 

generator. 

Let the elements of K be called X. i = 1,2,..n~ Then 
l 

each element of A can be written 

n n .. 
(i) A = C ° + ~ C i X. + ~ C l] X. X. + .... 

i=l i i 3 i,j 

C °, C i ...¢ 
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We restrict ourselves to the case That n is finite and we 

will not discuss topologies of A, i.e. we assume that The 

above sums for every A are arbitmarily large but finite. 

Defining algebraic relations are relations among the genera- 

tots 

( 2 )  P ( X . )  = 0 
1 

where P(X.) is a polynomial with complex coefficients of n 
1 

variables x.. An element B s A 
l 

(3) B = b ° + E b i X. + Z biJ 4 X. X. + .... 
l l 3 

b i ... ~ ¢ 

is equal to the element A iff (3) can be brought into the 

same forth (I) with the same coefficients C ° , C i, C i .... 

by the use of The defining relations (2). 

The best known examples of associative algebras are 

the enveloping algebras e(G) of Lie groups G. 

An enveloping algebra is the associative algebra gene- 

, in which the multiplication is defined rated by X 1 X 2 .. X n 

by the commutation relations 

n k 
• X. - X. X. - ~ C . X k = 0 (4) P(X i) = X l ] ] i i] 

k=l 

C..k are called the structure constants of the Lie group G. 
m3 

The commutation relations (4) do in general not suffice to 
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fully define an enveloping algebra of linear operators in 

given linear topological spaces. I.e,, there are several 

algebras of linear operators in linear topological spaces 

that fulfill a given commutation relation. In order to 

specify a particular algebra of operators one has to require 

additional algebraic relations and other properties (such 

as Z X~ be e.s.a.), 
l 
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LINEAR OPERATORS IN HILBERT SPACES 

We recall here a few of the definitions and important 

theorems from the theory of lineam operators in Hilbert 

space. 

Let A:K ÷ K be a linear but not necessarily bounded 

operator on a Hilbert space K and let D(A) be dense in K. 

Then A*, the adOpint of A, is defined in K by 

(A*f,h) = (f,Ah). 

The domain D(A*) is the set of all vectors f 6 K such that 

(f,Ah) = (z,h) holds for all h 6 D(A); the vector z is then 

uniquely defined and z = A*f. 

An operator A on K is called symmetriq if D(A) is dense 

in K and A C A* (i.e., D(A) C D(A*) and Af = A*f for every 

f E D(A)); it is called self-adjoint if D(A) is dense in K 

and A = A*. 

An operator A on K is called closed if the relations 

lim f = f, lim Af = g, f 6 D(A) 
n n n 

n -> oo n + oo 

imply f 6 D(A) and Af = g. Closedness is a weaker condition 

than continuity since, if an operator A on K is continuous, 

then 

lim f = f for f 6 D(A) 
n n 

n ÷ 
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implies that the sequence {Af } converges, while if it only closed, 
n 

then the convergence of the sequence {fn } for fn ~ D(A) does 

not imply the convergence of the sequence {Af }. However, 
n 

if A is closed then, in particular, it has the property that two 

sequences {At}and {Ag n} cannot converge to different limits 

if the corresponding sequences {%} and {gn } converge to the 

same limit. A* is always closed. 

If A is not closed, it is sometimes possible to find an 

extension of A which is closed. 

closure A iff the relations 

f 6 D(A), f' 6 D(A), 
n n 

imply g : g'. 

An operator A admits of a 

lim f = f, lim f' = f, 
n n 

n + ~ n ~ ~ 

lim Af = g, lim Af' = g' 
n n 

In this case D(~) consists of all f E K for 

which there exists a sequence {fn } 6 D(A) which satisfies 

the conditions: 

i) lim f = f and it) {Af } converges. Then by definition 
n n 

Af = lim Af . 
n 

An operator A on K is called essentially self-ad~oint 

if A is self-adjoint. Physical observable are assumed to be 

represented by essentially self-adjoint operators. 

An operator A on K is called Hermitian if A is bounded 

and self-adjoint. An operator A on K is called _unitary 
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if l lAfll : I Ifll for all f e K. A unitary operator satisfies 

the relations A*A = AA* = I. 

Let M be a closed subspace of a Hilbert space K. An 

operator P which associates with each f E K its projection 

fl on M, P:K ÷ g is called a pro~ection operator on M. Pro~ec- 

tion operators are linear, Hermitian (i.e., P~=P, D(P)=K) and 

idempotent (i.e., F 2 = P); and every linear, Hermitian, idempoten± 

operator with D(P) = K is a projection operator. Two proOection 

operators P1 and P2 are called orthogonal iff PIP2 = 0 ; in this 

case PI K and P2 K are orthogonal~ i.e., for every hl~ PIK and 

every h 2 ~ P2K, we have (hl,h 2) = 0. 
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PROOF OF LEMMA (14) SECTION II  BY INDUCTION 

(AI) From the e.r. follows: (N+l)a + = a+(N+2) 

a(N+l) = (N+2)a 

(14) is true for p = 1 because 
+ 

(~, a(N+l)a+~) = (~,aa (N+2)~) = (%(N+I)(N+2)$) 

= (¢,(N+I)2¢) + (%(N+I)¢) <_ 2(@,(N+I)2¢) 

because (~(N+])~) < ($I(N+I)2@) 

Assume (14) is tmue for p = q: i.e. 

+ 
(A2) ($,a(N+!)qa ~) < k(@,(N+l)q+l$) for every 

and calculate 

(¢,a(N+l)q+la+~) = (~,a(N+l)(N+l)q-l(N+l)a+¢) = 

because of (A1) 
=(%(N+2) a(N+l) q-I a+(N÷2)00) 

< k((N+2) ~, (N+l)q-l(N+2) ~) 

because (A2) is valid for every $,in particular for ~ = (N+2)@ 

< k[((N+l)¢,(N+l)q'l(N+l)¢) + (¢~(N+l)q¢) + ((N+I)¢,(N+I)q-I¢) 

+ (¢, (N+l)q-l¢) ] 

< 4"k (¢,(N+l)q+l¢) 

because of (6a). 

ConsequenTly (14) has been shown to be also fulfilled for 

p = q+l and Therefore it is generally true. 
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We will show in this Appendix that the defining assump- 

tions, i.e. (I,I)(I,2)(I,3) and the T@-continuity of P and 

Q, will lead to the Schr~dinger representation in the Schwamtz- 

31)33) 
space S. 

We choose one of the energy eigenstates 

~n, n = 1,2,...n and calculate (using a# n = /n Cn-l' 
+ 

a ~n = /~ ~n+l ): 

(i) <QCnlX > = ~5 (~ <¢n_llX> + ~ <~n+!ix> ) 2mm 

II 
~<¢nlX> 

for n = 0 one obtains 

(i) /~ <eolx> : <ellx> 

(i) is a recurrence relation for <~nlX >, which can be 

brought into a well known form by introducing 

fn(y ) ~ < ~ n  I x >  (2) y - __, : (assuming <~olX > ¢ 0) 
,/-~-/m~ <¢olX> 

(i) 

(I') 

(i') 

is then written 

fn+l(y ) = 2Yfn(y) - 2n fn.l(y) 

fl(y) = 2y fo(y); fo(Y) = 1 

n = l  ,2  ~ . . . 

(l') are the well known recurrence relations for the Hermite 

polynomials and have solutions for any complex y. 

Thus we conclude that for any complex value x there is 
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an antilinear (not necessarily continuous) functional 

Ix> = F x which is a generalized eigenvector. 

The functionals <~nlX> are given by 

(3x) <~nlX> _ 1 < C o ] X >  H ( X ) , 
n ~"-7-m-~ 

xE¢ 

As the operator Q is e.s.a. (as a consequence of (I,3)) 

the spectrum of Q must be real 28) Thus the spectrum is only 

a subset of generalized eigenvalues and in the spectral de- 

composition 

(4) ~ : fd~(x) Ix><xI~ > 
X n n 

only those generalized eigenvectors and those functionals 

<xl ~n > = <~n Tx> appear for which x is real. To find the 

spectrum of Q then means to determine which real values x 

appear in (4). 
x 

If we consider ~ (or any ¢ ~ ~)as functional at the 
n 

generalized eigenvector Fx, = ix,> ~ ~X x' s spectrum Q, 

then, according to (III,12)~we obtain from (4): 
x 

(Sx) #n(Fx '). : <x'l~n> : /dB(x) <x']x><Xl#n> 

Thus d~(x) <x'Ix> must be the Dirac measure, i.e. the 

distribution <x'Ix>defined by (5) must have the property of 
x 

the Dirac 6- "functions" (where X is continuous): 

(6) dg(x) <x'{x> : dx~(x'.x) 
x 
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We consider now the generalized eigenvectors of the 

operator P: 

pXlp> : PxFp = ~rp 

or <P¢Ip> = p<¢Ip> for every $ e ¢. 

U s i n g  P = T ( a - a  +) one can  p r o c e e d  i n  c o m p l e t e  a n a l o g y  

t o  t h e  p r o c e d u r e  f o r  Q f o l l o w i n g  eq .  ( 1 ) .  One o b t a i n s  t h a t  

t h e  s e t  o f  g e n e r a l i z e d  e i g e n v a l u e s  o f  P i s  t h e  complex  p l a n e  

and 

= - -  <# Ip > Hn(/~-~ ~) (Bp) <~nlp> in /2nn! o 

In analogy to the case for Q, also in the spectral de- 

composition of #n with respect to the operator P: 

(4p) ~n : fd~(p) Ip><p1~n > 

only those <p)#n > = <¢n--~ > of (Sp) occum for which p is real. 

If we consider @ e ~ as the functional on the space 
n 

~X at the element Fp, £ ~X then 

(Sp) <p'l¢> = /d~(p) <p'IP><PI¢ > 

so that we conclude 

(s) 
P 

d~(p) <P'IP > = dp ~(p'-p) 

The analogy between the p- and x- spectral decomposi- 

tion as expressed e.g. by the analogy between (3 x) and (3p) 
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we should have expected as the assumptions we started with, 

(!,I) and (I,3) are symmetric in Q and P. 

We now calculate the scalar product of n 

(4 x) with (3 x) and (4) with (3p): 
P 

and ~ using 
m 

(7) 6nm : (#n,¢m) : fdz(x) <¢nlX><Xl~m> 
X 

: 1 __ __i fd~(x)I<¢olX>I 2 H ( x )H ( x ) 

/2mm! 2~nn! X n ~/~ m v'~/m~ 

= fd~(p) <¢ Ip><pICm> 
spectrum P n 

1 1 fdz(p)l<¢olp>l 2 H ( P ) H ( P ) 
~ (spectrum P) n ~ m 

Comparing this with the orthogonality relations for the Hermite 

polynomials 

(8) 
+~ 2 

i f dye -y Hm(Y)Hn(Y) = 6mn 
n!2n/~ -~ 

and taking into account that the Hermite polynomials are only 

orthogonal polynomials if associated with the interval 
2 

-~ < y < +~ and the weight e -y (one can define Hn(Y) by 

(8) and derive (I') for real y) we conclude: 

me 2 

(9x) d~(x)r<~olX>[2 /me . . . .  {7~ x = ~ e dx 

(10 x) spectrum Q = X = {xI-~<x<+=} 
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and 

2 
P 

(9p) dp(p)[<¢olp>I 2 : / m~hl ~ e -m~d'2 dp 

(i0) spectrum P : {pI-~<P <+~} 
P 

If we agree to normalize the generalized eigenvectors 

such that 

(ii) <X'IX> = 6(X'-X) 
X 

(ii) <p'Ip> = 6(p'-p) 
P 

then according to (6) and (6) 
x p 

(12 x) dN(x) = dx 

(12) dN(P) : dp 
P 

and  

m~ x 2 

(!3x) <¢n Ix> : n ~-/m~ 

2 

.n 1 i-i-- H ( P ") J m~-2~'2 (13p) <¢ Ip> = i / n ~ ma~n n 

Thus far we know the matrix elements of Q in the basis 

of generalized eigenvectors of Q 

x 
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and the matrix elements of P in the basis of generalized 

eigenvectors of P 

(i0~) <pIPl¢> =p <pie> 

We now want to calculate the matrix elements of P in 

the basis of generalized eigenvectors of Q and the matrix 

elements of Q in the basis of generalized eigenvectors of 

P. In order to do this, we will consider ~ as a functional n 

a% The generalized eigenvector Fp g #X, P g spectrum P, and 

use the spectral decomposition (4): 
X 

(i4 x) <PI@n > = {dx<plx><XI@n > 

and then as a functional at the generalized eigenvector 

F ~ %X, x ~ Spectrum Q, and use the spectral decomposition 
X 

(4): 
P 

(Z4p) <X[~n> = fdp <x[p><P[~n> 

<Xl¢n > and <PI~n > in (14) are given by (13x) and (13p) 

respectively. 

The Her~nite polynomials have the following property: 

+~ __e iSn e-~2/2 
(15) i n e -n2/2 Hn(n) : _~fd~ 2~ Hn({) 

Inserting (13p) and (13 x) into this relation it follows 

(iS x) 

ixp 

+~ e ~ 
<¢nlp> : /dx <¢ Ix> 
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or taking the complex conjugate 

> = fdx e <Xl~n> (I-~) <pE~ n /Z~ 

Comparing (I~ x) with (14 x) we find that the distributions 

<plx> are given by: 

(17 x ) <plx> : e 

In the same way one obtains from (1S) and (14p) 

1 eiXp/~ (17p) <xlp> - 

(17 x) and (17p) together give 

(18) <xlp> = <plx> 

We emphasize that (18) does not follow from the "hermiticity 

propemty of the "scalar product" <xlp>" but is a very particu- 

lar property of the operators P and Q (and--as a consequence 

thereof--of the Fourier transformation). 

For the general ease of two arbitrary systems of general- 

ized eigenvectors II>; AXII> = YII > 

and 18 >; BXI8 > = 818> 

it is not always true that 

<~)s> = <~-lY> 

though (III,l~) holds always. 

It is now simple to calculate the matrix element of P 

in the basis of generalized eigenvectors of Q, using (17p) 
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<xlPl¢> = fdp p <xJp><pl¢> 

= fdp ~ i ~ <xlp><pl~> 

(19) 
x 

In the same way using (17 x) one obtains 

(i9) 
P 

d 

It is now easy to see what the realizatioD of ¢ by the 

functions <xl$> (or <pl¢>) is: As every powem Qn and pm of 

the operators P and Q are defined on #, the functions 

<xI¢> = ¢(x) must fulfill: 

(¢,Qn~) = ]dx xnl<xl~>l 2 < ® 

(20) 

d m 
~)m fax <x[~> (~,pm~) = ([ 

dx TM 

($,Qnpm¢) : (~)m fdx < X I ¢ >  x n dm 
i dx n 

< x ( ¢ >  < 

As all algebraic expressions in P and Q are continuous 

operators in $ the sequence $~(x) = <xl¢ > , which is the 

realization of the convergent sequence $ T$ ÷ $, converges 

to $(x) = <xI¢> if the x n d-~- $~(x) converge uniformly on 
dx m 

every bounded region to xn d-~- $(x) 
dx m 

The space of functions ¢(x) that fulfill (20) and for 

which The convergence is defined in the above described way 
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is the space of test functions S (Schwartz space). 

Concluding this appendix we emphasize that in deriving 

(19) and (10) we have made use of (I,3), because by (I~3) 

we were led to (1) and therewith to the Hemmite polynomials, 

whose properties have been used extensively to establish 

(19) and (I0). 



REFERENCES AND FOOTNOTES 

i) I. M. Gelfand~ G. E. Shilov, Generalized Functions, Vol. II~ 

in particular~ Ch. I., Academic Press, New York 1967, 

I. M. Gelfand, N. J. Vilenkin, Generalized Functions, 

Vol. IV, in particular Ch. I. 

2) K. Maurin~ General Eigenfunction Expansions and Unitary 

Representations of Topological Groups. Workawa 1968. 

3) J. yon Neumann~Mathematical Foundations of Quantum 

Mechanics~ Springer Berlin 1932, Princeton University 

Press IS55. 

4) P. A. M. Dirac, The Principles of Quantum Mechanics~ 

Clarendon Press Oxford 1958. 

5) J. E. Roberts~ Journal Math. Phys. ~ 1097 (1966). Also 

J. P. Antoine J. Math. Phys. IO, 53, 2276(t969). 

6) A. Bohm, Boulder Lectures in Theoretical Physics, Vo!. 9A, 

255(1966). 

7) The explanation of the content of this basic assumption 

is the subject of this paper. All the unknown mathematical 

notions will be defined or described in the following sec- 

tions .... Appendices I(Linear Space)~ II(Algebra) and 

III(Operators in Hilbert Space) contain further definitions 

which are not given in the paper. 



66 

8) The formulation given here is a special case of the 

construction of Rigged Hilbert Spaces for enveloping 

algebras of Lie groups which has been suggested in A. Bohm 

Journ. Math. Phys. 8, 1557(1966), Appendix~ and independently 

by B. Nagel, College de France Lectures (1970). A de- 

tailed treatment of g(SU(I,I)), which is slightly more 

complicated than the example treated here, has been given 

in G. Lindblad~ B. Nagel, Ann. Inst. Poinear~ Section A- 

(N.S.) 13, 27(1970). 

9) See Appendix II 

I0) See Appendix I 

ii) See Appendix IIi 

12) E. Nelson, Ann. Math. 7_~0, 572(1959). 

13) H. D. Doebner Proceedings of the 1966 Istambul Summer 

Institute. 

14) In a scalar product space The norm II I I is defined by 

15) The construction of The completion R of The space R 

consists of the following: The elements of the space R 

are all possible Cauchy sequences x ={Xn}, x n6 R, where 

two such sequences x = {x n} and y = {yn } are not considered 

distinct if llx n - ynl I + 0 and the elements x e R are 

identified in R with the sequence {x,x~x, ..... }- The 



67 

operations with these sequences are defined by 

~x = {eXn}, x + Y = {x n + yn}~ (x,y) = lira (Xn,Y n) 
n ÷ 

One can verify that R is then a complete scalar product 

space, i.e. a Hilbert space 

16) That (N+I) p is e.s.a, can be proved in many ways. It 

also follows from The fact that (N+I) p is an elliptic 

element in the enveloping algebra of a group representation; 

see ref.20). 
+ 

17) It is well known that P, Q and aa cannot be continuous 

operators with respect to T H and are, therefore, not 

defined on the whole Hilbert space. 

18) Let #9 ÷ $ i.e. ($v - ~) ~ 0. Let us assume that A was 

not defined on $. As A is a continuous operator 

T@ 
A(#~ -~) + 0. Therefore we can define A on $ by 

AS = T~-!im A~ V • 

19) The definition of closed and closable operators is given 

in Appendix III. P,Q,H are closable because they are 

symmetric and a symmetric operator admits a closure. 

20) E. Nelson, W. F. Stinespring~ Amer. Journ. Math. 81~ 547, 

(1959). 

21) The original definition of nuclearity for countably 

normed spaces (Grothendieek, Gelfand and Kostyuchenko) 

is: @ is nuclear iff for any m there is an n such that 



68 

the mapping # ÷ ¢ is nuclear i.e. has the form 
n m 

Cn B ~ + ~ Ik(~,~k)n~ k where #.i is the completion 
k=l 

of ~ with respect to the norm II II i and {~k},{~k}are 

orthonormal systems in the spaces 9 and @ respectively, 
n m 

~k > 0 and El k < ~. 

22) J. E. Roberts Commun. Math. Phys. 3--, 98(1966). 

28) A. A. Kirillov, Dokl. Akad. Nauk. SSSR 130, 966(1960). 

24) A. Bohm, Appendix B of Journ. Math. Phys. 8, !557(1967). 

25) B. Nagel, Lecture Notes, College de France (1970). 

26) For a proof we refer to gelfand, Shilov~ ref. ~) Vol. II~ 

Ch. I, Sect. 5, 8 and Gelfand, Vilenkin~ ref. l.) Vol. IV~ 

Ch. I~ Sect. 3, 6. 

27) This statement holds for countably Hilbert spaces if 

X . T IS the strong topology and in nuclear spaces--where 

strong and weak topology coincide~ also for the weak 

topology See ref. 25. 

28) For a simple proof of this statement see e.g. Liusternlk 

Sobole~, Elements of ~unctional Analysis §31 or Akhiezer, 

Glazman~ Theory of Linear Operators in Hilbert Spaoe §43. 

29) For a proof of the Nuclear Spectral Theorem see ref. i.) 

and ref. 2 .) 

30) J. Dixmier~ Comp. Math. I_~3~ 263~ (1958) and references 

thereof. 



69 

31) P. Kristensen, L. Meljbo~ E. Thue Poulsen, 

Commun. Math. Phys. i, 175, (1965). 

32) G. Lindblad, B. Nagel, Ann. Inst. Poincar4 Sect. A 

(N.S.) 13, 27(1970). 

33) Fo~ the possibility of weakening assumption (I,3) 

see: L.C. Mejlbo~ Math. Scand. 13~ 129(1963); see also 

H. G. Tillmann, Act. Sci. Math. 24, 258(1963)~ C. Foias, 

L. Geh6~ B. Sz-Nagy, Act. Sci. Math. 21, 78(1960). 



ACKN OWLB DGBMENT : 

T h e s e  l e c t u r e  n o t e s  h a v e  g rown  u n d e r  t h e  i n f l u e n c e  o f  

discussions with the participants of the Mathematical Physics 

Seminar at the Mathematics and Physics Departments of the 

University of Texas. I am particularly grateful to E. C. G. 

Sudarshan who read different versions of the manuscript. 

R. B. Teese has been of great help in the preparation of the 

manuscript. Support from the U. S. Energy Research and 

Development Administration is gratefully acknowledged. 



Selected Issues from 

Lecture Notes in Mathematics 

Vol. 431 : S~minaire Bourbaki - vol. 19731?4. Exposes 436-452.  
IV, 347 pages. 1975. 

Vol. 433: W. G. Fade, Self-Adjoint Operators, VII, 115 pages. 
1975. 
VoL 434: P. Brenner, V. ThomSe, and L. B. Wahlbin, BeaDy 
Spaces and Applications to Difference Methods for Initial Value 
Problems. U, 154 pages. 1975. 

Vol. 440: R. K. Getoor, Markov Processes: Ray Processes and 
Right Processes. V, 116 pages. 1975. 

Vol. 442: C. H. Wilcox, Scattering Theory for the d'Alembert 
Equation in Exterior Domains. Ill, 184 pages. 1975. 

Vol. 446: Partial Differential Equations and Related Topics, 
Proceedings 1974. Edited by J. A. Goldstein. IV, 389 pages. 
1975, 

Vol. 448: Spectral Theory and Differential Equations. Proceedings 
1974. Edited by W. N. Everitt. XlI, 321 pages. 1975. 

Vol. 449: Hyperfunctions and Theoretical Physics. Proceedings 
1973, Edited by F. Pham. IV, 218 pages. 1975. 

Vol. 458: P. Waiters, Ergodic Theory - Introductory Lectures. 
VI, 198 pages, 1975. 

Vol. 459: Fourier Integral Operators and Partial Differential Equa- 
tions. Proceedings 1974. Edited by J. Chazarain. VI, 372 pages. 
1975, 

VoI. 461 : Computational Mechanics. Proceedings 1974. Edited by 
J. T. Oden. VII. 328 pages. 1975. 

Vol. 463: H.-H, Kuo, Gaussian Measures in Banach Spaces. VI, 
224 pages. 1975. 

Vol. 464 : C. Rockland. Hypcellipticity and Eigenvalue Asymptotica. 
III, 171 pages. 1975. 

Vol.466: Dynamical Systems- Warwick19?4, Proceedings1973/?4. 
Edited by A. Manning. X, 405 pages. 1975. 

VoL 470: R. Bowen, Equilibrium States and the Ergodic Theory of 
Anoaov Diffeomorphisms. I~1,106 pages. 1975. 

Vol. 474: S~minaire Pierre Lelong (Analyse) Ann~e 1973/74. Edit~ 
par P. Lelong. VI, 162 pages. 1975. 

Vol. 484: Differential Topology and Geometry. Proceedings 1974. 
Edited by G. P. Joubert, R. P. Moussu, and R. H. Roussarie. IX, 
267 pages. 1975. 

Vol. 457 : H. M. Reimann und T. Rychener, Funktionen besohr~nkter 
mittlerer Oszillation. VI, 141 Seiten. 1975, 

Vol. 469: J. Bair and R. Fourneau, Etude G~om~trique des Espaces 
Vectoriele. Une Introduction. VII, 185 pages. 1975. 

VoL 490: The Geometry of Metric and Linear Spaces. Proceedings 
1974. Edited by L. M. Kelly. X, 244 pages. 1975. 

VoL 503: Applications of Methods of Functional Analysis to Problems 
in Mechanics. Proceedings 1975. Edited by P. Germain and B. 
Nayroles. XIX, 531 pages. 1976. 

Vol. 507: M. C. Reed, Abstract Non-Linear Wave Equations. VI, 
126 pages. 1976. 

Vol. 509: D. E. Blair, Contact Manifolds in Riemannian Geometry. 
VI~ 146 pages. 1976. 

VoL 515: B~cklund Transformations. Nashville, Tennessee 1974. 
Proceedings, Edited by R, M, Miura. VIII, 295 pages, 1976, 

VoL 516: M. L Silversteln, Boundary Theory for Symmetric Markov 
Processes. XVI, 314 pages. 1976. 

Vol. 518: S6minaire de Th6orie du Potentiel, Proceedings Paris 
1972-1974. Edit~ par F. Hirsch et G. Mokobodzki. VI, 275 pages. 
1976. 

Vol. 522: C. O. Bloom and N. D. Kazarinoff, Short Wave Radiation 
Problems in Inhomogeneous Media: Asymptotic Solutions. V. 104 
pages. 1976. 

Vol. 523: S. A. Albeverio and R. J. Heegh-Krohn, Mathematical 
Theory of Feynman Path Integrals. IV, 139 pages, 1976. 

Vol. 524: S6minaire Pierre Lelong (Analyse) Annie 1974]75. Edit6 
par P. Le]ong. V, 222 pages. 1976. 

VcI. 525: Structu~.l Stability, the Theory of Catastrophes, and 
Applications in the Sciences. Proceedings 1975. Edited by P. Hilton. 
VI, 408 pages. 1976. 

Vol. 526: Probability in Banach Spaces. Proceedings 1975. Edited 
by A. Beck. VI, 290 pages. 1976. 

Vol. 527: M. Denker, Ch. Grillenberger, and K. Sigmund, Ergodic 
Theory on Compact Spaces. IV, 360 pages. 1976. 

Vol. 532: Th~orie Ergodique. Proceedings 19?3/1974. Edite par 
J.-P. Conze and M. S. Keens. VIII> 227 pages. 1976. 

VeI. 538: G. Fischer, Complex Analytic Geometry. VII, 201 pages. 
1976. 

Vol. 543: Nonlinear Operators and the Calculus of Variations, 
Bruxelles 1975. Edited by J. P. Gossez, E. J. Lami Doze, .I. Mawhin, 
and L. Waelbroeck, VII, 237 pages. 1976. 

Vol. 552: C. G. Gibson, K. WirthmtJIler, A. A. du Ptessis and 
E. J. N. Locijenga. Topological Stability of Smooth Mappings. V, 
156 pages. 1976. 

Vol. 556: Approximation Theory. Bonn 1976. Proceedings. Edited by 
R. Schaback and K. Scherer. VII, 466 pages. 1976. 

Vol. 559: J.-P. Caubet, Le Mouvement Brownien Relativiste. IX, 
212 pages. 1976. 

Vol. 561; Fu notion Theoretic Methods for Partial Differential Equations. 
Darmstadt 1975. Proceedings. Edited by V. E. Meister, N. Weck 
and W. L. Wendland. XVIII, 520 pages. 1976. 

VoI. 564: Ordinary and Partial Differential Equations, Dundee 1976. 
Proceedings. Edited by W. N. Evaritt and B. D. Slaeman. XVIII, 551 
pages. 1976. 

Vol. 565: Turbulence and Navier Stokes Equations. Proceedings 
1975. Edited by R. Temam. IX, 194 pages. 1976. 

Vol. 566: Empirical Distributions and Processes.. Oberwolfach 1976. 
Proceedings. Edited by P. Gaenssler and P. ROv$sz. VII, 146 pages. 
1976. 

Vol. 570: Differential Geometrical Methods in Mathematical Physics, 
Bonn 1975. Proceedings. Edited by K. Bleul~r and A. Reetz. VIII, 
576 pages. 1977. 

Vol. 572: Sparse Matrix Techniques, Copenhagen 1976. Edited by 
V. A. Barker. V, 164 pages. 1977. 


	front-matter.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf

